Solving recurrence relations for multi-loop Feynman integrals
نویسندگان
چکیده
منابع مشابه
Solving Recurrence Relations for Multi-Loop Feynman Integrals
We study the problem of solving integration-by-parts recurrence relations for a given class of Feynman integrals which is characterized by an arbitrary polynomial in the numerator and arbitrary integer powers of propagators, i.e., the problem of expressing any Feynman integral from this class as a linear combination of master integrals. We show how the parametric representation invented by Baik...
متن کاملAdvanced method of solving recurrence relations for multi - loop Feynman integrals . ⋆
The systematic approach to solving the recurrence relations for multi-loop integrals is described. In particular, the criteria of their reducibility is suggested.
متن کاملComputation of Feynman loop integrals
We address multivariate integration and extrapolation techniques for the computation of Feynman loop integrals. Loop integrals are required for perturbation calculations in high energy physics, as they contribute corrections to the scattering amplitude and the cross section for the collision of elementary particles. We use iterated integration to calculate the multivariate integrals. The combin...
متن کاملMulti-loop Feynman Integrals and Conformal Quantum Mechanics
New algebraic approach to analytical calculations of D-dimensional integrals for multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of multi-loop Feynman integrals, such as integration by parts and star-triangle relation methods, can be drastically simplified by using this algebraic approach. To demonstrate the advantages of the algebraic method of ...
متن کاملEquivalence of Recurrence Relations for Feynman Integrals with the Same Total Number of External and Loop Momenta
We show that the problem of solving recurrence relations for L-loop (R + 1)-point Feynman integrals within the method of integration by parts is equivalent to the corresponding problem for (L + R)-loop vacuum or (L + R − 1)-loop propagator-type integrals. Using this property we solve recurrence relations for two-loop massless vertex diagrams, with arbitrary numerators and integer powers of prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 2003
ISSN: 0550-3213
DOI: 10.1016/j.nuclphysb.2003.09.003